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Introduction

The equations for a vibrating circular membrane give normal frequencies which are not in a
harmonic relationship. Traditionally, this result is interpreted as the reason that drums are
used for rhythm rather than melody.1 The problem here is that certain modern drums are used
for rhythm and melody. If identifiable pitches are being perceived in these drums, then how are
the necessary harmonic frequencies being produced? This question suggests the development of
a more detailed mathematical model - one which treats the drum as a system of several vibrating
components.

The orchestral tympani, or kettle-drum, consists of a single membrane stretched over a
bowl-shaped shell. It produces powerful bass notes with a definite sense of pitch, and Lord
Rayleigh identified at least a partial sequence of harmonic frequencies emanating from the anti-
symmetric modes of the membrane.2 These observations have been very nearly explained with a
model that accounts for the tympani’s enclosed volume of air. This approach supposes that the
air essentially adds mass to the membrane, and Green’s functions are used to approximate the
air loading.3 This model produces a shifted set of modal frequencies which closely agree with
the data obtained from an actual drum. However, the more puzzling phenomenon of resonance
has been observed in two-headed drums like tom-toms and bass drums.

The tonal bass drums used in marching percussion are large, loud drums of various diam-
eters which are carried vertically and can be struck from either side. As a consequence, both
membranes are the same thickness, and usually have the same the same tension. These drums
are tuned to harmonic intervals, and some percussionists claim that each bass can be identified
with a definite pitch. Furthermore, it has been observed that for each drum and head combina-
tion, there is an optimum tuning scheme - one which will produce the clearest and most lasting
tone when the drum is struck.4 Similar in design are Japanese Taiko drums which consist of
two membranes stretched over a long, barrel-shaped wooden shell. These drums were studied in
1934 by Obata and Tesima, and the coupled vibration of the top and bottom heads is beautifully
shown in Figure 1(a).5

Figure 1: (a) Vibrations of top and bottom membranes in a Taiko Drum. (b) Taiko Drum with
damped bottom membrane. J. Obata and T. Tesima, "Experimental studies on the sound and
vibration of drums," Journal of the Acoustical Society of America 6, pp 267 (1935)
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In light of this data, viewing the air as “mass-loading” for the membranes would not account
for the transfer of energy between the two heads, and indeed that model’s predicted frequencies
do not agree with the experimentally determined frequency spectrum of a bass drum.3 In fact,
the patterns of head displacements recorded experimentally suggest the “beats” produced by
superposition of the modes of a coupled system of two masses, the coupling in this case being
relatively weak. This would imply that the enclosed air is acting more like a spring than a
dashpot.

In this paper, we develop and study a simplified model of a tympani-style drum, treating
the air as a spring. These ideas are then used to model a two-headed drum as a coupled system
of vibrating membranes.

One Membrane

The Model

Figure 2: Geometry of the idealized drum with a single membrane.

The simplest model that still exhibits the desired characteristics is a flexible elastic membrane
stretched over a roughly rectangular enclosure of air with rigid sides of height ’H’, a rigid bottom
of length ’L’ and a width of one unit. If the membrane is allowed only vertical displacements,
with no twisting or side-to-side movement, then the membrane’s behavior over time can be
modelled by the function

u(t, x), 0 < x < L, 0 < t

where the displacement is independent of y. Since we expect the displacements to be relatively
small, we assume the membrane is held at a constant tension τ and has constant density ρm.
Now in order to describe the function u(t, x), we consider a small section of the membrane
starting at a generic point xε[0, L] and ending at x + ∆x, and examine the forces acting on it
(Figure 3).

In order to define the upward force fa due to the compression of air inside the box we first
note that when the membrane is at rest, i.e. u(t, x) = 0 ∀xε[0, L], the atmospheric pressure
inside and outside the box will apply equal and opposite forces to the respective surfaces of
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Figure 3: Forces acting on a small section of the membrane

the membrane. Here we assume that air pressure is proportional to air density. This idea goes
back to Helmholz6 , and was described in the book by Lamb7 in reference to resonators. Thus
the atmospheric pressure is P a

0 = γρa
0 , where γ is some proportionality constant, and ρa

0 is
the density of air under standard conditions. Now whenever the volume of air inside the box
changes, the density and hence the pressure of the air inside the box changes, so the box’s air’s
pressure as a function of the excess volume ∆v is given by

P (∆v) = γρ(∆v) = γ

(
ρa
0HL

HL + ∆v

)
.

Here we are only concerned with the excess pressure

Px(∆v) = P (∆v) − P a
0 =

γρa
0HL

HL + ∆v
− γρa

0

or Px(∆v) =
−γρa

0∆v

HL + ∆v
.

Assuming that ∆v will be relatively small compared to the total volume HL, we approximate
Px(∆v) around ∆v = 0 with a Taylor polynomial, keeping only the first-order term:

∆Px(∆v) =
−γρa

0∆v

HL
.

Thus the upward force due to air pressure on the section of length ∆x is given by

∆x∆Px(∆v) =
−∆xγρa

0∆v

HL
.

As for the upward forces due to tension, we see from Figure 3 that

f τ
l

−τ
= tan(θ1), and

f τ
r

τ
= tan(θ2)

or f τ
l = −τ

(
∂u(t, x)

∂x

)
, and f τ

r = τ
∂u(t, x + ∆x)

∂x

so the sum of forces acting on the section of membrane is given by

f = τ

[
∂u(t, x + ∆x)

∂x
−

∂u(t, x)

∂x

]
−

∆xγρa
0∆v

HL
.

Thus from Newton’s second law, ma = f , we can write

∆xρm ∂2u(t, x)

∂t2
= τ

[
∂u(t, x + ∆x)

∂x
−

∂u(t, x)

∂x

]
−

∆xγρa
0∆v

HL
.
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Dividing both sides by ∆x and taking the limit as ∆x → 0, we obtain

ρm ∂2u(t, x)

∂t2
= τ

∂2u(t, x)

∂x2
−

γρa
0∆v

HL
.

In this equation, the excess volume is given by

∆v =

∫ L

0
u(t, x)dx,

and so upon substituting into the above equation and dividing both sides by ρm, we obtain the
integro-differential equation

(1)
∂2u(t, x)

∂t2
= α2 ∂

2u(t, x)

∂x2
− C

∫ L

0
u(t, x)dx

where α2 =
τ

ρm
, and C =

γρa
0

HLρm
,

along with the boundary conditions

(2) u(t, 0) = 0 = u(t, L), t > 0

which specify that the membrane is fixed at the ends x = 0, x = L.
In trying to find solutions to (1) we employ the method of separation of variables, assuming

u(t, x) = T (t)X(x). Then (1) becomes

T ′′(t)X(x) = α2T (t)X ′′(x) − CT (t)

∫ L

0
X(x)dx.

Dividing both sides by α2T (t)X(x) gives

T ′′(t)
T (t)

=
X ′′(x)

X(x)
−

C
∫ L

0 X(x)dx

α2X(x)
.

Since t and x are supposed to be independent, the left and right sides of the above expression
should be constant, i.e.

T ′′(t)
α2T (t)

= Λ =
X ′′(x)

X(x)
−

C
∫ L

0 X(x)dx

α2X(x)

for some constant Λ.

Thus, (3) T ′′(t) − Λα2T (t) = 0

and (4) ΛX(x) = X ′′(x) −
C

α2

∫ L

0
X(x)dx

where the boundary conditions in (2) imply that

(5) X(0) = 0 = X(L).

Now we are in a position to state the following.
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Theorem:

The integro-differential equation (4) with boundary conditions (5) has the set of eigenfunctions

S =

{
cos

(
2vnπx

L
− vnπ

)
− cos(vnπ)

}∞

n=1

⋃ {
sin

(
2mπx

L

)}∞

m=1

where each vn solves

(6) tan(πv) = πv −
4α2π3v3

CL3

with vn → 2n−1
2 as n → ∞. Moreover, the set S is orthogonal, and complete with respect to

the space L2[0, L].

Proof:

We start with equation (4). In trying to find solutions, the main intution is this: the mode
shapes involved in the solutions to (1) should be similar to the mode shapes of the well known
vibrating string problem, except they will be “squashed” or compressed due the the effect of the
air enclosed beneath them. With this in mind, we look for solutions of the form

X(x) = sin(πωx + φ) + D.

Since X(0) = 0, we have

sin(φ) + D = 0 or D = − sin(φ),

and since X(L) = 0,
sin(πωL + φ) − sin(φ) = 0

or sin(πωL + φ) = sin(φ).

The above equation gives two cases:

(i) πωL = 2mπ, m = 1, 2, . . . , or

(ii) πωL + φ = π − φ + 2mπ, m = 1, 2, . . . .

Under case (i) we have

X(x) = sin(
2mπx

L
+ φ) − sin(φ),

X ′′(x) =
−4m2π2

L2
sin(

2mπx

L
+ φ),

and

∫ L

0
X(x)dx =

{
−L

2mπ
cos(

2mπx

L
+ φ) − x sin(φ)

]L

0

= −L sin(φ).

Thus (4) becomes

Λ

[
sin(

2mπx

L
+ φ) − sin(φ)

]
=

−4m2π2

L2
sin(

2mπx

L
+ φ) +

CL

α2
sin(φ)
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from which we see that Λ = −4m2π2

L2 , and

−Λ sin(φ) =
CL

α2
sin(φ)

or

[
CL

α2
−

4m2π2

L2

]
sin(φ) = 0,

i.e.

[
CL3 − 4m2π2α2

α2L2

]
sin(φ) = 0.

Thus if CL3 − 4m2π2α2 %= 0 ∀m = 1, 2, . . . †, then sin(φ) = 0 which implies φ = zπ, z =
±1,±2, . . ., and

X(x) = ± sin(
2mπx

L
), m = 1, 2, . . .

is a solution to (4) with

Λ2m =
−4m2π2

L2
.

As for case (ii),
πωL + φ = π − φ + 2mπ, m = 1, 2, . . .

⇒ φ =
−πωL

2
+

(2m + 1)π

2
, m = 1, 2, . . .

and

X(x) = sin

(
πωx −

πωL

2
+

(2m + 1)π

2

)
− sin

(
−πωL

2
+

(2m + 1)π

2

)

= ±

[
cos

(
πωx −

πωL

2

)
− cos

(
−πωL

2

)]

or X(x) = ±

[
cos

(
πωx −

πωL

2

)
− cos

(
πωL

2

)]
.

Assuming without loss of generality that

X(x) = cos

(
πωx −

πωL

2

)
− cos

(
πωL

2

)
we have

X ′′(x) = −π2ω2 cos

(
πωx −

πωL

2

)
,

and

∫ L

0
X(x)dx =

{
1

πω
sin

(
πωx −

πωL

2

)
− x cos

(
πωL

2

)]L

0

=
2

πω
sin

(
πωL

2

)
− L cos

(
πωL

2

)
.

Substituting into (4) we see that

Λ

[
cos

(
πωx −

πωL

2

)
− cos

(
πωL

2

)]
= −π2ω2 cos

(
πωx −

πωL

2

)
−

C

α2

{
2

πω
sin

(
πωL

2

)
− L cos

(
πωL

2

)}
†In the remark at the end of the proof, we discuss the special case where CL3

− 4(m∗)2π2α2 = 0 for some
integer m∗
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so Λ = −π2ω2, and − Λ cos

(
πωL

2

)
= −

2C

α2πω
sin

(
πωL

2

)
+

CL

α2
cos

(
πωL

2

)

or

[
π2ω2 −

CL

α2

]
cos

(
πωL

2

)
= −

2C

α2πω
sin

(
πωL

2

)
.

If we define a new variable v by

v =
ωL

2
,

then ω = 2v
L

, and from above we have

4π2v2

L2 − CL
α2

−CL
α2πv

= tan(πv)

or
4α2π3v3

L2 − CLπv

−CL
= tan(πv)

i.e. tan(πv) = πv −
4α2π3v3

CL3
.

Thus

X2vn
(x) = cos

(
2vnπx

L
− vnπ

)
− cos(vnπ)

is a solution to (4), where

(6) tan(πvn) = πvn −
4α2π3v3

n

CL3
, n = 1, 2, . . .

and vn → 2n−1
2 as n → ∞. From the plot of tan(πv) versus πv − 4α2π3v3

CL3 (with α2 = L = 1,
and C = 4π2) shown in Figure 4, it is clear that for each vn, we have 2n−1

2 < vn < 2n+1
2 . These
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Figure 4: tan(πv) vs. πv − 4α2π3v3

CL3

7



solutions give Λ2vn
= − 4v2

n
π2

L2 .
We now consider the orthogonality of the set of eigenfunctions defined by

S =

{
cos

(
2vnπx

L
− vnπ

)
− cos(vnπ)

}∞

n=1

⋃ {
sin

(
2mπx

L

)}∞

m=1

,

where each vn satisfies (6). Now if H2
0 [0, L] is the set of all square integrable, twice differentiable

functions X : [0, L] → R such that X(0) = X(L) = 0, then S is a set of eigenfunctions for the
linear operator F : H2

0 [0, L] → L2[0, L] defined by

F (X)(x) = X ′′(x) −
C

α2

∫ L

0
X(x)dx.

These functions will be orthogonal if F is self-adjoint. Indeed, if we consider the inner product

on L2[0, L] defined by 〈X, Y 〉 =
∫ L

0 X(s)Y (s)ds, then

〈F (X), Y 〉 =

∫ L

0

[(
X ′′(s) −

C

α2

∫ L

0
X(x)dx

)
Y (s)

]
ds

=

∫ L

0
X ′′(s)Y (s)ds −

C

α2

∫ L

0

(∫ L

0
X(x)dx

)
Y (s)ds

=

(
{X ′(s)Y (s)]

L
0 −

∫ L

0
X ′(s)Y ′(s)ds

)
−

C

α2

∫ L

0

∫ L

0
X(x)Y (s)dxds.

Since Y εH2
0 [0, L], Y (0) = 0 = Y (L) ⇒ {X ′(s)Y (s)]L0 = 0 and

〈F (X), Y 〉 = −

∫ L

0
X ′(s)Y ′(s)ds −

C

α2

∫ L

0

∫ L

0
X(x)Y (s)dxds

= −

[
{X(s)Y ′(s)]L0 −

∫ L

0
X(s)Y ′′(s)ds

]
−

C

α2

∫ L

0

∫ L

0
X(s)Y (x)dxds.

Similarly {X(s)Y ′(s)]L0 = 0 so

〈F (X), Y 〉 =

∫ L

0
X(s)Y ′′(s)ds −

C

α2

∫ L

0
X(s)

(∫ L

0
Y (x)dx

)
ds

=

∫ L

0
X(s)

(
Y ′′(s) −

C

α2

∫ L

0
Y (x)dx

)
ds

= 〈X, F (Y )〉 ,

which shows that F is self-adjoint, as desired. Thus the eigenfunctions in S are orthogonal with
respect to the aforementioned inner product.

In order to show completeness of the set S we will show that the inverse of the operator F
is compact. To find the inverse, we consider an arbitrary element XεH2

0 and let

f(x) = F [X ](x).

Thus

f(x) = X ′′(x) −
C

α2

∫ L

0
X(x)dx

or X ′′(x) = f(x) + D, where D =
C

α2

∫ 1

0
X(x)dx.
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Upon integrating twice, we obtain the equation

X(x) =

∫ x

0

∫ t

0
f(s)dsdt +

Dx2

2
+ Ex + F,

where X(0) = 0 ⇒ F = 0. Also, by examining the region of integration, we see that∫ x

0

∫ t

0
f(s)dsdt =

∫ x

0

∫ x

s

f(s)dtds

so

X(x) =

∫ x

0

∫ x

s

f(s)dtds +
Dx2

2
+ Ex,

or

X(x) =

∫ x

0
(x − s)f(s)ds +

Dx2

2
+ Ex.

Now X(L) = 0 implies that

0 =

∫ L

0
(L − s)f(s)ds +

DL2

2
+ EL

or E =
1

L

∫ L

0
(s − L)f(s)ds −

DL

2
,

so we have

X(x) =

∫ x

0
(x − s)f(s)ds +

Dx2

2
+

x

L

∫ L

0
(s − L)f(s)ds −

DLx

2
.

We break up the second integral and combine it with the first to obtain

X(x) =

∫ x

0
(x − s +

xs

L
− x)f(s)ds +

∫ L

x

x(s − L)

L
f(s)ds +

Dx2

2
−

DLx

2

=

∫ x

0

( x

L
− 1

)
sf(s)ds +

∫ L

x

x
( s

L
− 1

)
f(s)ds +

D

2
(x2 − Lx)

or X(x) =

∫ L

0
G(x, s)f(s)ds +

D

2
(x2 − Lx)

where G(x, s) =

{ (
x
L − 1

)
s, 0 ≤ s ≤ x,

x
(

s
L
− 1

)
, x < s ≤ L.

Since D = C
α2

∫ L

0 X(x)dx, we integrate the above expression with respect to x, obtaining

D =
C

α2

∫ L

0

∫ L

0
G(x, s)f(s)dsdx +

CD

2α2

∫ L

0
(x2 − Lx)dx

or D =
C

α2

∫ L

0

(∫ L

0
G(x, s)dx

)
f(s)ds −

CDL3

12α2

where we have switched the order of integration in the first integral, and evaluated the second.
Noting that the function G is symmetric about the line x = s, we see that∫ L

0
G(x, s)dx =

∫ L

0
G(s, x)dx =

1

2

( s

L
− 1

)
s
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so

D =
C

α2

∫ L

0

1

2

( s

L
− 1

)
sf(s)ds −

CDL3

12α2

=
C

2α2
(
1 + CL3

12α2

) ∫ L

0

( s

L
− 1

)
sf(s)ds

=
6C

12α2 + CL3

∫ L

0

( s

L
− 1

)
sf(s)ds.

Thus

X(x) =

∫ L

0
G(x, s)f(s)ds +

3C

12α2 + CL3

∫ L

0
x(x − L)

( s

L
− 1

)
sf(s)ds

or

X(x) =

∫ L

0
G(x, s)f(s)ds +

∫ L

0
H(x, s)f(s)ds

where H(x, s) =
3CL

12α2 + CL3
xs

( x

L
− 1

)( s

L
− 1

)
.

Therefore, the inverse operator F−1 defined by

F−1 [f ] (x) =

∫ L

0
(G + H)(x, s)f(s)ds,

F−1 : L2[0, L] → L2[0, L],

is an integral operator with a continuous, symmetric kernal. Thus F−1 is compact and self-
adjoint and we can say that the set of eigenfunctions for F−1 is a basis for L2[0, L]. To see why
this is exactly the set S defined above, we first consider the restriction

F−1
0 : H2[0, L] → L2[0, L].

For any f in the domain of F−1
0 , f is continuous, and an application of F to both sides is

permissible. Differentiation and integration show that

F [F−1
0 [f ]] = f, ∀fεH2[0, L].

Now for any X in the domain of F−1
0 such that

F−1
0 [X ] = ΛX,

we have
F [F−1

0 [X ]] = F [ΛX ] = ΛF [X ] = X

which implies that X is an eigenfunction for F associated with the eigenvalue 1
Λ . Thus the

eigenfunctions of F−1
0 are contained in S. Similarly, since F−1

0 [F [X ]] = X ∀XεD(F ), S is
contained in the set of eigenfunctions of F−1

0 , and we have set equality. Finally, since H2[0, L]
is dense in L2[0, L], F−1 is the closure of F−1

0 , and S is the set of eigenfunctions of F−1. This
completes the proof.

For the sake of illustration, the first five elements of S (for F with α2 = L = 1, and C = 4π2)
are graphed in Figure 5.
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Figure 5: Shapes of the first five modes. Note that the odd modes are shifted sinusoids, and
with the exception of the first one, they have non-integer frequencies.
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Remark

In case (i) of the proof it is interesting to note that if for some positive integer m∗ we have
CL3 − 4(m∗)2π2α2 = 0, then there are no restrictions on φ and

X∗(x) = sin

(
2m∗πx

L
+ φ

)
− sin(φ)

is a solution to (4) for any choice of φ in the real numbers! To see why this is true, we first note

that m∗ =
√

CL3

2απ
and that m∗ is an integer solution of

tan(πm) = πm −
4α2π3m3

CL3
.

This means that we have two different eigenfunctions associated with the eigenvalue Λ∗ =
−4(m∗)2π2

L2 , namely

S2m∗(x) = sin

(
2m∗πx

L

)
, and S2v

m
∗
(x) = cos

(
2m∗πx

L
− m∗π

)
− cos(m∗π).

Now

X∗(x) = sin

(
2m∗πx

L
+ φ

)
− sin(φ)

= sin

(
2m∗πx

L

)
cos(φ) + cos

(
2m∗πx

L

)
sin(φ) − sin(φ)

= cos(φ) sin

(
2m∗πx

L

)
+ sin(φ)

[
cos

(
2m∗πx

L

)
− 1

]

= A sin

(
2m∗πx

L

)
+ B

[
cos

(
2m∗πx

L
− m∗π

)
− cos(m∗π)

]

where A = cos(φ), and B =
(
−1m∗

)
sin(φ). Here we have taken into account the fact that m∗

can be even or odd. Therefore

X∗(x) = AS2m∗(x) + BS2v
m

∗
(x)

and

F [X∗] (x) = F [AS2m∗ ] (x) + F [BS2v
m

∗
] (x)

= AΛ∗S2m∗(x) + BΛ∗S2v
m

∗
(x)

= Λ∗X∗(x).

This phenomenon is reminiscent of the “degenerate modes” encountered in the solutions to the
classical 2-D vibrating membrane with a square boundary, and it might offer an explanation for
the so-called “sweet spot” or optimum tension which each drum and head combination seems to
possess. Since adjusting the tension of the membrane would amount to changing the value of α,
one could aim for a certain m∗ if they desired a certain frequency to have the degenerate modes
mentioned above. However, it is still not clear what frequency to strive for, and how or even if
this phenomenon contributes to the resonance of a real drum.
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Application

Using the values of Λ associated with each element of S, we can solve the O.D.E. (3) for the
time dependent parts of each solution, and then write down the general solution to (1) using
the principle of superposition for linear operators:

ug(t, x) =
∞∑

n=1

[
a2vn

cos

(
α2vnπt

L

)
+ b2vn

sin

(
α2vnπt

L

)](
cos

(
2vnπx

L
− vnπ

)
− cos(vnπ)

)

+
∞∑

m=1

[
a2m cos

(
2mαπt

L

)
+ b2m sin

(
2mαπt

L

)]
sin

(
2mπx

L

)
.

Evaluating this expression and its first time derivative at t = 0, we see that

ug(0, x) =
∞∑

n=1

a2vn
(S2vn

(x)) +
∞∑

m=1

a2m (S2m(x)) , and

∂ug(0, x)

∂t
=

∞∑
n=1

2vnαπ

L
b2vn

(S2vn
(x)) +

∞∑
m=1

2mαπ

L
b2m (S2m(x)) .

This, combined with the previous result allows us to solve initial value problems of the type

∂2up(t, x)

∂t2
= α2 ∂

2up(t, x)

∂x2
− C

∫ L

0
up(t, x)dx,

up(t, 0) = 0 = up(t, L) ∀t > 0,

up(0, x) = f(x),
∂up(0, x)

∂t
= g(x)

because as long as f is continuous and g is piecewise continuous, we may find the eigenfunction
expansions

f(x) =
∞∑

n=1

sf
2vn

S2vn
(x) +

∞∑
m=1

sf
2mS2m(x),

g(x) =
∞∑

n=1

sg
2vn

S2vn
(x) +

∞∑
m=1

sg
2mS2m(x),

and construct the particular solution

up(t, x) =
∞∑

n=1

[
sf
2vn

cos

(
2vnαπt

L

)
+

L

2vnαπ
sg
2vn

sin

(
2vnαπt

L

)]
S2vn

(x)

+
∞∑

m=1

[
sf
2m cos

(
2mαπt

L

)
+

L

2mαπ
sg
2m sin

(
2mαπt

L

)]
S2m(x).

13



Coupled Membranes

Figure 6: Geometry of the idealized drum with two membranes.

Here again we consider a simplified model of a drum with two flexible membranes of length
L, rigid sides with height H , and a width of 1 unit. Using the same assumptions as before, the
following system of integro-differential equations can be derived:

(7)
∂2u1(t, x)

∂t2
= α2

1
∂2u1(t, x)

∂x2
− C1

∫ L

0
[u1 − u2](t, x)dx,

(8)
∂2u2(t, x)

∂t2
= α2

2
∂2u2(t, x)

∂x2
+ C2

∫ L

0
[u1 − u2](t, x)dx.

Solutions

With the example of a bass drum in mind, we take α1 = α2 = α, and C1 = C2 = C This
represents the idealized scenario in which both drumheads have the same density and are tuned

to the same tension. With this setup, we look for pairs of solutions

[
u1

u2

]
where u1 = −u2.

These represent the modes of vibration where the heads move opposite each other, alternately
compressing and expanding the enclosed volume of air. Thus, (7) and (8) become

(9)
∂2u(t, x)

∂t2
= α2 ∂

2u(t, x)

∂x2
− 2C

∫ L

0
u(t, x)dx,

where u = u1 = −u2. Using the previous result for the one membrane problem it can be shown
that

un(t, x) =

[
an sin

(
2vnπαt

L

)
+ bn cos

(
2vnπαt

L

)]
S2vn

(x), an, bn,εR

is a solution to (9) where S is defined as above, with vn solving

tan(πv) = πv −
4α2π3v3

2CL3
for n = 1, 2, . . . .

14



Furthermore, if we look for pairs of solutions to (7)-(8) where u1 = u2 = u, and
∫ L

0 u(t, x)dx %= 0,
then (7) and (8) become

(10)
∂2u(t, x)

∂t2
= α2 ∂

2u(t, x)

∂x2
, and

um(t, x) =

[
cm sin

(
(2m − 1)παt

L

)
+ dm sin

(
(2m − 1)παt

L

)]
sin

(
(2m − 1)πx

L

)
, cm, dmεR

is a solution to (10) for m = 1, 2, . . . . These are the “odd” solutions to the vibrating string
problem, and they represent the modes of vibration where both heads move “in sync” with each

other. Finally, if
∫ L

0 u1(t, x)dx = 0 =
∫ L

0 u2(t, x)dx, then (7) and (8) become uncoupled, and we
arrive at the “even” solutions[

u1(t, x)
u2(t, x)

]
=

[ (
pk sin

(
2kπαt

L

)
+ qk sin

(
2kπαt

L

))
sin

(
2kπx

L

)(
rk sin

(
2kπαt

L

)
+ sk sin

(
2kπαt

L

)
sin

(
2kπx

L

)) ]

pk, qk, rk, skεR, k = 1, 2, . . . .

Now we can write down the general solution to (7)-(8) as follows:

(11)

[
u1(t, x)
u2(t, x)

]
g

=

∞∑
n=1

(
an

[
sin

(
2vnπαt

L

)
− sin

(
2vnπαt

L

) ]
+ bn

[
cos

(
2vnπαt

L

)
cos

(
2vnπαt

L

) ])
S2vn

(x)

︸ ︷︷ ︸
v

+

∞∑
m=1


cm


 sin

(
(2m−1)παt

L

)
sin

(
(2m−1)παt

L

)

+ dm


 cos

(
(2m−1)παt

L

)
cos

(
(2m−1)παt

L

)



 sin

(
(2m − 1)πx

L

)
︸ ︷︷ ︸

w

+

∞∑
k=1

[
pk sin

(
2kπαt

L

)
+ qk cos

(
2kπαt

L

)
rk sin

(
2kπαt

L

)
+ sk cos

(
2kπαt

L

) ]
sin

(
2kπx

L

)
︸ ︷︷ ︸

y

where v represents the “out-of-phase” solutions, w represents the “in-phase” solutions, and y

represents the uncoupled solutions. It is worthwhile to note that since
∫ L

0 y(t, x)dx = 0, any
fluctuations in volume must come from the u and v solutions.

The claim here is that for any initial displacements and velocities[
f1(x)
f2(x)

]
,

[
g1(x)
g2(x)

]
, f1, f2, g1, g2εL

2[0, L]

the constants in the above solution can be chosen so that[
u1(0, x)
u2(0, x)

]
=

[
f1(x)
f2(x)

]
, and

[
∂u1(0,x)

∂t
∂u2(0,x)

∂t

]
=

[
g1(x)
g2(x)

]
.
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To see why this is true, we first evaluate the general solution and its time derivative at t = 0,
obtaining [

u1(0, x)
u2(0, x)

]
=

∞∑
n=1

bnS2vn
(x)

[
1
−1

]
+

∞∑
m=1

dm sin

(
(2m − 1)πx

L

)[
1
1

]

+
∞∑

k=1

[
qk

sk

]
sin

(
2kπx

L

)
,

and

[
∂u1(0,x)

∂t
∂u2(0,x)

∂t

]
=

∞∑
n=1

2vnπαanS2vn

[
1
−1

]
+

∞∑
m=1

(2m−1)παcm sin

(
(2m − 1)πx

L

)[
1
1

]

+
∞∑

k=1

2kπα

[
pk

rk

]
sin

(
2kπx

L

)
.

In order to decompose the initial displacements in terms of the first expression, we start by
finding the “even” Fourier coefficients of f1(x) and f2(x). Then we can write[

f1(x)
f2(x)

]
=

[
f̂1(x) + f̄1(x)
f̂2(x) + f̄2(x)

]
,

where

[
f̄1(x)
f̄2(x)

]
=

∞∑
k=1

[
qk

sk

]
sin

(
2kπx

L

)
.

The residual

[
f̂1(x)
f̂2(x)

]
=

[
f1(x)
f2(x)

]
−

[
f̄1(x)
f̄2(x)

]
can be written as

[
f̂1(x)
f̂2(x)

]
= vf (x)

[
1
−1

]
+ wf (x)

[
1
1

]

where vf (x) =
f̂1(x) − f̂2(x)

2
, and wf (x) =

f̂1(x) + f̂2(x)

2
.

Therefore we need only to express vf (x) in terms of the elements of S, and wf (x) in terms
of the “odd” sine functions. From the previous result on the completeness and orthogonal-
ity of S, it is clear that this can be done. Thus, if vf (x) =

∑∞
n=1 bnS2vn

(x) and wf (x) =∑∞
m=1 dm sin

(
(2m−1)πx

L

)
, then

[
f1(x)
f2(x)

]
=

[
f̂1(x)
f̂2(x)

]
+

[
f̄1(x)
f̄2(x)

]

=
∞∑

n=1

bnS2vn
(x)

[
1
−1

]
+

∞∑
m=1

dm sin

(
(2m − 1)πx

L

)[
1
1

]
+

∞∑
k=1

[
qk

sk

]
sin

(
2kπx

L

)
.

This means that the general solution (11), with the appropriate b′ns, d′ms, q′ks, and s′ks, can be
made to fit any initial displacements. A similar process can be used to fit the initial velocities.
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Application

In order to model a struck bass drum with identical heads and tensions, the initial value problem
(9) − (10) (with α = 2, C = π2, and L = 1) was solved with the following combination of
initial displacements and velocities. [

u1(0, x)
u2(0, x)

]
=

[
0
0

]
,

[
∂u1(0,x)

∂t
∂u2(0,x)

∂t

]
=

[
g1(x)

0

]

where g1(x) =




0, 0 ≤ x < 0.4,
−1, 0.4 ≤ x ≤ 0.6,

0, 0.6 < x ≤ 1.

The first twenty terms in each series were computed by using approximations to the first twenty
functions in S. The resulting pair of approximate solutions describes the upper and lower
membranes’ displacements over time and is shown in Figure 8. In an effort to simulate the
proximity sensor data obtained by Obata and Tesima, the displacement of the fixed point x = 1

4
on each membrane was graphed over the first 5.5 seconds, and the plots are shown in Figure 7.
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Figure 7: Tracking the displacement of the point x = 1
4 on the top and bottom membranes over

time.
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Figure 8: Displacements of the top and bottom membranes in a coupled system over time.
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Extension

When both membranes have the same characteristics, the above solution technique is relatively
straightforward, although a bit labor-intensive. A considerably more challenging problem is
posed by the possibility of using different materials for the top and bottom heads of the drum,
or even just tuning them differently. This amounts to solving (7)-(8) with α1 %= α2 or C1 %= C2.

Once this problem is solved, the techniques presented in this paper could be extended to
allow displacements in the y-direction as well, and models for three-dimensional box-shaped
drums could be developed. By writing the integro-differential equations in polar coordinates, it
would be possible to develop a mathematical model for cylindrical drums, although the solutions
may be quite a bit harder to come by.

Finally, the phenomenon of “movable nodes” that was remarked upon earlier could be inves-
tigated further with the intent of predicting the “fundamental tone” of a given drum and head
combination.
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